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Abstract
The scaling limit of the two-dimensional Ising model above the critical
temperature is considered as an example for relativistic quantum theories on
two-dimensional Minkowski space exhibiting a factorizing S-matrix. In this
model, a recently proposed criterion for the existence of local quantum field
theories with a prescribed factorizing scattering matrix is verified, thereby
establishing a new constructive approach to two-dimensional quantum field
theory in a particular example. The existence proof is accomplished by
analysing the nuclearity properties of certain specific subsets of fermionic Fock
spaces, and yields as a byproduct also a verification of the energy nuclearity
condition of Buchholz and Wichmann in models of free fermions in four
spacetime dimensions.

PACS numbers: 11.10.Cd, 11.10.Kk, 11.55.Ds
Mathematics Subject Classification: 81T05, 81T08, 81T40, 81U40

1. Introduction

In the last few years a new strategy for the construction of two-dimensional quantum field
theories with a factorizing scattering matrix has been developed. At the basis of this approach
lies the insight of Schroer and Wiesbrock [25, 27] that factorizing S-matrices of massive
bosons can be used to define bosonic Wightman fields localized in wedge-shaped regions of
two-dimensional Minkowski space by means of the Zamolodchikov algebra [30]. The simple
class of two-particle scattering matrices S2 of a single species of massive particles without
bound states has been analysed in [18]. It was shown there that the wedge-local fields on
one hand share many properties with a free field, but, on the other hand, lead to non-trivial
two-particle scattering states corresponding to S2. This construction opens a new perspective
in the inverse scattering problem in low-dimensional quantum field theory, i.e. the formfactor
program [2, 28].
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After the construction of the wedge-local fields, a vital issue in this approach is to show
that the models so defined also contain observables localized in bounded spacetime regions.
Whereas the concrete construction of local quantum fields turns out to be very difficult, the
existence problem seems to be more easily manageable in the algebraic setting of quantum field
theory [14]. There one considers not the wedge-local fields themselves but rather the so-called
wedge algebras generated by them. In this framework, the existence of local observables is
equivalent to the non-triviality of certain intersections of such algebras [27].

Because of the distinguished geometric action of the modular operators [4, 5, 22]
corresponding to wedge algebras and the vacuum, these objects have been studied intensely in
local quantum physics. By combining the knowledge scattered in the literature, a convenient
sufficient condition for the existence of local observables in wedge-local theories was recently
established in [10]. This criterion, known as the modular nuclearity condition [6], has
previously been studied in connection with thermodynamical properties of quantum field
theories [4, 7].

Given a net W �−→ A(W) of wedge algebras acting on the physical Hilbert space H with
vacuum vector �, consider two wedges W1,W2, where W1 contains the causal complement
W ′

2 of W2, and the double cone region O := W1 ∩ W2. The content of the modular nuclearity
condition is as follows: if the map

� : A(W ′
2) −→ H, �(A) := �

1/4
W1

A�, (1.1)

is nuclear1, non-trivial operators localized in O do exist [10]. Here �W1 denotes the modular
operator of (A(W1),�), which in the models considered acts simply as a boost with an
imaginary rapidity parameter [10].

Although this criterion does not solve the task of the explicit construction of local
operators, it opens up the possibility of deciding whether such fields exist. Moreover, it
provides information about the structure of local algebras determined by them. We are
therefore led to the question whether the maps (1.1) are nuclear, for example in the class of
S-matrices considered in [18].

As a first step in this direction, we verify in the present paper the modular nuclearity
condition in an explicit example of a factorizing theory. The model chosen is fixed by the
constant two-particle scattering matrix S2 = −1. It is thus related to the Ising model in the
scaling limit, above the critical temperature [3]. The underlying fields are most conveniently
represented on an antisymmetric Fock space. Because of this formal analogy with systems
of free fermions, it is possible to study nuclearity properties of maps such as (1.1) in a
mathematical framework wide enough to cover interaction-free fermionic theories as well.
This has the advantage that, as a byproduct of our present investigation, we can also show
that the energy nuclearity condition of Buchholz and Wichmann [11] is satisfied in theories
describing free fermions. Although this was expected from the thermodynamical interpretation
of the energy nuclearity condition, only bosonic theories were shown to satisfy this criterion
up to now [9, 11].

This paper is organized as follows. The analysis of nuclearity properties of maps on
fermionic Fock space in a general setting is presented in section 2. In section 3, we verify
the modular nuclearity condition in the factorizing theory based on the two-particle S-matrix
S2 = −1 by applying these results. Some comments about the energy nuclearity condition for
free fermions are given in section 4.

1 See definition 2.1.



On the existence of local observables 3047

2. Nuclear maps on fermionic Fock space

In this section we study the nuclearity properties of certain subsets of antisymmetric Fock
space in a general setting. We first explain the mathematical structure involved and then
state our main result in proposition 2.1, which yields a criterion for the nuclearity problem
mentioned in the introduction and has the advantage that it can be checked on the one-particle
space. In section 3, we will apply the results obtained here to the Ising model and show that
the one-particle condition is fulfilled in this example.

The mathematical structure needed for our analysis is as follows: let K be a complex
Hilbert space with an antilinear involution � = �∗ = �−1 acting on it. (In the applications,
K will be realized as a one-particle space of square integrable functions on the upper mass
shell and � corresponds to complex conjugation in configuration space.) We consider two
closed, complex subspaces Lϕ and Lπ of K which are invariant under � and the real linear
subspace defined by

L := (1 + �)Lϕ + (1 − �)Lπ . (2.1)

By second quantization one obtains the antisymmetric Fock spaceH overK, the vacuum vector
� ∈ H and the usual annihilation and creation operators a(ψ) and a∗(ψ) = a(ψ)∗, ψ ∈ K,
representing the CAR algebra on H, i.e. (ψ1, ψ2 ∈ K)

[a(ψ1), a(ψ2)]+ = 0, (2.2)

[a(ψ1), a
∗(ψ2)]+ = 〈ψ1, ψ2〉 · 1. (2.3)

Here we introduced the notation [A,B]± = AB ±BA for the (anti-) commutator and 〈., .〉 for
the scalar product on K. (The scalar product on H will be denoted by the same symbol.) We
adopt the convention that the creation operator a∗(ψ) depends complex linearly on ψ ∈ K.
The CAR relations imply that the annihilation and creation operators are bounded [12]:
‖a(ψ)‖ = ‖a∗(ψ)‖ = ‖ψ‖.

Furthermore, we introduce a fermionic field operator

φ(ψ) := a∗(ψ) + a(ψ), ψ ∈ L, (2.4)

as well as the auxiliary fields (ψ ∈ K)

ϕ(ψ) := a∗(ψ) + a(�ψ), π(ψ) := i(a∗(ψ) − a(�ψ)), (2.5)

which are related to the time zero Cauchy data of φ in the field theoretic context. Note that
ϕ(ψ)∗ = ϕ(�ψ), π(ψ)∗ = π(�ψ) and that ϕ(ψ1) and π(ψ2) anticommute for arbitrary
ψ1, ψ2 ∈ K. For later use we also state

a(�ψ) = 1
2 (ϕ(ψ) + iπ(ψ)). (2.6)

The field φ generates the von Neumann algebra

A(L) := {φ(ψ) : ψ ∈ L}′′, (2.7)

and we assume that the vacuum vector � is seperating for this algebra2.
The last element needed for our analysis is a densely defined, strictly positive operator

X on K, which commutes with the involution �. In particular, X is assumed to be invertible.
Having in mind the nuclearity conditions mentioned in the introduction, one should think of X
as representing one of the following two operators: in connection with the modular nuclearity
condition, put X = �1/4, where � is the modular operator of some von Neumann algebra
containing A(L) with respect to the vacuum vector, and in the context of the energy nuclearity
condition, put X = e−βH , where β > 0 is the inverse temperature and H the Hamiltonian of

2 As in [10, 18], one may equivalently write A(L) = {exp(iφ(ψ)) : ψ ∈ L}′′ [16].
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the theory. As the former example indicates, X is not required to be bounded. We use the same
symbol X to denote its second quantization

⊕∞
n=0 X⊗n and assume that A(L)� is contained

in its domain.
It is our aim to find sufficient conditions on the real subspace L and the operator X that

imply the nuclearity of the map

�L : A(L) −→ H, �L(A) := XA�. (2.8)

For the convenience of the reader, we briefly recall the notion of a nuclear map between two
Banach spaces (cf, for example, [23]).

Definition 2.1. A linear map � between two Banach spaces A and H is said to be nuclear
if there exists a sequence of linear functionals ρk ∈ A∗, k ∈ N, and a sequence of vectors
�k ∈ H, k ∈ N, such that for all A ∈ A

�(A) =
∞∑

k=1

ρk(A) · �k,

∞∑
k=1

‖ρk‖A∗‖�k‖H < ∞. (2.9)

The nuclear norm ‖�‖1 of such a map is defined as

‖�‖1 := inf
ρ,�

∞∑
k=1

‖ρk‖A∗‖�k‖H, (2.10)

where the infimum is taken with respect to all sequences ρk ∈ A∗, �k ∈ H, k ∈ N, complying
with the above conditions.

As � seperates A(L) and X is invertible, the nuclearity of the map �L is equivalent to the
nuclearity of the set

N (X,L) := {XA� : A ∈ A(L), ‖A‖ � 1}−, (2.11)

which is a subset of H (the bar indicates closure in the norm topology of H), and the nuclearity
index of this set [23] coincides with the nuclear norm of �L. We may thus treat the map (2.8)
and the set (2.11) on an equal footing.

Denoting by Eϕ,Eπ ∈ B(K) the orthogonal projections onto Lϕ,Lπ , respectively, the
nuclearity properties of (2.8) are characterized in the following proposition.

Proposition 2.1. Assume that EϕX and EπX extend to trace class operators on K. Then �L
is a nuclear map, and its nuclear norm is bounded by

‖�L‖1 � e2‖EϕX‖1 · e2‖Eπ X‖1 . (2.12)

In comparison with the analogous result for bosons [9, theorem 2.1] one notices two
differences: firstly, the conditions on EϕX,EπX are relaxed since the bounds ‖EϕX‖ < 1,
‖EπX‖ < 1 on their operator norms are not required here. Secondly, our bound on the
nuclearity index is smaller than the corresponding one for bosons, det(1 − |EϕX|)−2 · det(1 −
|EπX|)−2, obtained in [9]. This can be seen from the following simple inequality, valid for
any non-zero trace class operator T with norm ‖T ‖ < 1. The singular values of T are denoted
by tn, repeated according to multiplicity

e2‖T ‖1 = e2
∑∞

n=1|tn| =
∞∏

n=1

(e−|tn|)−2 <

∞∏
n=1

(1 − |tn|)−2 = det(1 − |T |)−2.

This result is due to the Pauli principle; it may be understood in analogy with the difference
between the partition functions of the non-interacting Bose and Fermi gases in the grand
canonical ensemble.
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The rest of this section is devoted to the proof of proposition 2.1. To accomplish this
proof, we have to amplify the nuclearity of the one-particle operators EϕX,EπX to the desired
nuclearity statement for �L, which amounts to estimating the ‘size’ of �L(A(L)) as a subset
of the fermionic Fock space H. Such an amplification will be achieved by exploiting the
structure of underlying CAR algebra in connection with the real linear structure given by �.

In a first step, we proceed from A(L) to the polynomial algebra generated by the field,

P(L) := span{φ(ψ1) · · · φ(ψn) : n ∈ N, ψi ∈ L}. (2.13)

As φ(ψ) is bounded, P(L) is a weakly dense subalgebra of A(L). In view of the closedness
of X, we may apply Kaplansky’s density theorem and conclude that if the set

N0(X,L) := {XA� : A ∈ P(L), ‖A‖ � 1}− (2.14)

is nuclear, then the larger set (2.11) is nuclear, too, with the same nuclearity index [9]. It is
therefore sufficient to study the restriction of �L to P(L), and we begin with some comments
about this algebra.

The polynomial algebra has the structure of a Z2-graded ∗-algebra, with even and odd
parts P+(L) and P−(L) given by the linear span of the field monomials of even and odd
order, respectively. On P(L) acts the grading automorphism

γ (A+ + A−) := A+ − A−, A± ∈ P(L)±. (2.15)

As ‖γ ‖ = 1 and A± = 1
2 (A ± γ (A)), we conclude ‖A±‖ � ‖A‖.

The following lemma about the interplay of the CAR algebra and P(L) in connection
with the real linear structure of L is the main technical tool in the proof of proposition 2.1.
We will denote the symplectic complement of L by

L′ = {ψ ∈ K : 〈ψ, ξ 〉 = 〈ξ, ψ〉 ∀ξ ∈ L}. (2.16)

In preparation recall that an odd derivation on a Z2-graded algebra P is a linear map
δ : P → P which satisfies δ(P±) ⊂ P∓ and obeys the graded Leibniz rule

δ(A±B) = δ(A±)B ± A±δ(B), A± ∈ P±, B ∈ P. (2.17)

Lemma 2.1. For arbitrary ψ ∈ K, the assignments

δ±
ψ (A) := 1

2 [ϕ((1 ∓ �)ψ) + iπ((1 ± �)ψ),A+]−

+ 1
2 [ϕ((1 ∓ �)ψ) + iπ((1 ± �)ψ),A−]+ (2.18)

define two odd derivations on P(L) which are real linear in ψ . These maps satisfy the bounds∥∥δ+
ψ(A±)

∥∥ � (‖(1 − �)Eϕψ‖2 + ‖(1 + �)Eπψ‖2)1/2 · ‖A±‖, (2.19)∥∥δ−
ψ (A±)

∥∥ � (‖(1 + �)Eϕψ‖2 + ‖(1 − �)Eπψ‖2)1/2 · ‖A±‖. (2.20)

Moreover, if ψ ∈ L′,
δ+
ψ = 0, δ−

iψ = 0. (2.21)

Proof. The real linearity of ψ �−→ δ±
ψ follows directly from definition (2.18) and the real

linearity of ϕ, π and �.
As δ±

ψ are complex linear maps on P(L), it suffices to consider their action on field
monomials φ(ξ1) · · · φ(ξn), ξ1, . . . , ξn ∈ L to prove the other assertions of the lemma. We
also write φk := φ(ξk) and carry out a proof based on induction in the field number n. For
n = 1, the CAR relations (2.2) and (2.3) imply that

δ±
ψ (φ(ξ)) = 1

2 [ϕ((1 ∓ �)ψ) + iπ((1 ± �)ψ), φ(ξ)]+

= 1
2 (〈ξ, (1 ∓ �)ψ〉 ∓ 〈(1 ∓ �)ψ, ξ 〉 − 〈ξ, (1 ± �)ψ〉 ± 〈(1 ± �)ψ, ξ 〉) · 1

= (〈�ψ, ξ 〉 ∓ 〈ξ, �ψ〉) · 1. (2.22)
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As L is �-invariant, so is L′, and hence ψ ∈ L′ implies δ+
ψ(φ(ξ)) = 0, δ−

iψ(φ(ξ)) = 0. Being
a multiple of the identity, δ±

ψ (φ(ξ)) is contained in P+(L) for arbitrary ψ ∈ K. The step from
n to n + 1 fields is achieved by considering

[F, φ1 · · · φ2n]− = [F, φ1 · · ·φ2n−1]+ · φ2n − φ1 · · · φ2n−1 · [F, φ2n]+,

[F, φ1 · · · φ2n+1]+ = [F, φ1 · · · φ2n]− · φ2n+1 + φ1 · · · φ2n · [F, φ2n+1]+,
(2.23)

with F = 1
2 (ϕ((1 ∓ �)ψ) + iπ((1 ± �)ψ)). It follows from these formulae inductively that

δ±
ψ turn even elements of P(L) into odd ones and vice versa. Moreover, δ+

ψ = 0, δ−
iψ = 0

for ψ ∈ L′ because of the corresponding result for n = 1. By direct calculation, one can
also verify the Leibniz rule (2.17). We have thus shown that δ±

ψ are odd derivations of P(L)

satisfying (2.21).
To prove the norm estimate (2.19), we first note that

ψ ′ := (
1
2 (1 + �)(1 − Eπ) + 1

2 (1 − �)(1 − Eϕ)
)
ψ (2.24)

is an element of the symplectic complement L′ for arbitrary ψ ∈ K, as can be easily verified
using (2.1). Since δ+

ψ ′ = 0 and δ+
ψ is real linear in ψ , we have∥∥δ+

ψ(A±)
∥∥ = ∥∥δ+

ψ−ψ ′(A
±)

∥∥
= 1

2‖[ϕ((1 − �)Eϕψ) + iπ((1 + �)Eπψ),A±]∓‖
� ‖ϕ((1 − �)Eϕψ) + iπ((1 + �)Eπψ)‖ · ‖A±‖. (2.25)

To proceed to the estimate (2.19), let χ− := (1 − �)Eϕψ, χ+ := (1 + �)Eπψ . As (ϕ(χ−) +
iπ(χ+))

∗ = −(ϕ(χ−) + iπ(χ+)) and ϕ(χ−) anticommutes with π(χ+),

‖ϕ(χ−) + iπ(χ+)‖ = ‖ϕ(χ−)2 − π(χ+)
2‖1/2 = (‖χ−‖2 + ‖χ+‖2)1/2.

Together with (2.25) this implies the claimed norm bound (2.19) for δ+
ψ . To establish the

corresponding inequality (2.20) for δ−
ψ , consider the vector

ψ ′′ := (
1
2 (1 − �)(1 − Eπ) + 1

2 (1 + �)(1 − Eϕ)
)
ψ, (2.26)

which is contained in iL′ for any ψ ∈ K. The norms of δ−
ψ (A±) = δ−

ψ−ψ ′′(A±) can then be
estimated along the same lines as before. �

After these preparations, we now turn to the proof of the nuclearity of �L by estimating
the size of its image in H. Let ξ1, . . . , ξn ∈ K ∩ dom(X) and A ∈ P(L). In view of the
second quantization structure of X and the annihilation property of a(ξj ), we have

〈a∗(�ξ1) · · · a∗(�ξn)�,XA±�〉 = 〈�, a(X�ξn) · · · a(X�ξ1)A
±�〉

= 〈�, [a(X�ξn), [. . . [a(X�ξ2), [a(X�ξ1), A
±]∓]± . . .]±]∓�〉. (2.27)

From the inside to the outside, commutators and anticommutators are applied alternatingly.
We start with a commutator [a(X�ξ1), A

+]− if A = A+ is even and with an anticommutator
[a(X�ξ1), A

−]+ if A = A− is odd. Writing the annihilation operator as a linear combination
of the auxiliary fields (2.6) and recalling that X commutes with �, one notes that the innermost
(anti-) commutator is

[a(X�ξ1), A
±]∓ = 1

2

(
δ+
Xξ1

+ δ−
Xξ1

)
(A±). (2.28)

Making use of this equality for all the n (anti-)commutators, it becomes apparent that (2.27)
can be rewritten as

〈a∗(�ξ1) · · · a∗(�ξn)�,XA±�〉 = 2−n
〈
�,

((
δ+
Xξn

+ δ−
Xξn

) · · · (δ+
Xξ1

+ δ−
Xξ1

)
(A±)

)
�

〉
. (2.29)

According to the assumptions of proposition 2.1,

Tϕ := EϕX, Tπ := EπX (2.30)
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are trace class operators on K. Taking into account that δ±
Xξj

are odd derivations on P(L), an
application of the bounds (2.19), (2.20) to (2.29) yields

|〈a∗(�ξ1) · · · a∗(�ξn)�,XA±�〉| � 2−n

n∏
j=1

((‖(1 − �)Tϕξj‖2 + ‖(1 + �)Tπξj‖2)1/2

+ (‖(1 + �)Tϕξj‖2 + ‖(1 − �)Tπξj‖2)1/2) · ‖A±‖. (2.31)

Following [11, 9] we now consider the positive operator

T := (|Tϕ|2 + |Tπ |2)1/2 (2.32)

which is in the trace class, too, satisfies ‖T ‖1 � ‖Tϕ‖1 + ‖Tπ‖1 [17] and commutes with �

since Tϕ and Tπ do. As T 2 � |Tϕ|2, T 2 � |Tπ |2,∥∥ 1
2 (1 ∓ �)Tϕξj

∥∥2
+

∥∥ 1
2 (1 ± �)Tπξj

∥∥2 �
∥∥ 1

2 (1 ∓ �)T ξj

∥∥2
+

∥∥ 1
2 (1 ± �)T ξj

∥∥2 = ‖T ξj‖2.

In terms of T, we thus arrive at the estimate

|〈a∗(�ξ1) · · · a∗(�ξn)�,XA±�〉| � 2n‖A±‖ ·
n∏

j=1

‖T ξj‖. (2.33)

Although this bound was derived for ξ1, . . . , ξn ∈ K ∩ dom(X) only, it holds for arbitrary
ξ1, . . . , ξn ∈ K since K ∩ dom(X) ⊂ K is dense and the left- and right-hand sides of (2.33)
are continuous in the ξj . With the estimate (2.33), we are now able to give a bound on the
nuclearity index of the set (2.11).

The positive trace class operator T acts on ψ ∈ K as T ψ = ∑∞
k=1 tk〈bk, ψ〉bk , where

bk, k ∈ N, is an orthonormal basis of K and tk are the (positive) eigenvalues of T, repeated
according to multiplicity, i.e.

∑∞
k=1 tk = ‖T ‖1 < ∞. Moreover, since � and T commute, we

may choose the basis vectors bk to be eigenvectors of � as well. As a consequence of the Pauli
principle, the vectors

bk := a∗(�bk1

) · · · a∗(�bkn

)
� = ±a∗(bk1

) · · · a∗(bkn

)
� (2.34)

form an orthonormal basis of the totally antisymmetric subspace of K⊗n (the fermionic
n-particle space) if the multi-index k := (k1, . . . , kn) varies over k1 < k2 < · · · < kn, k1, . . . ,

kn ∈ N.
Note that XA� has even (odd) particle number if A ∈ P(L) is even (odd). By the Fock

structure of H, we have for each �L(A) = XA� ∈ N (X,L) the decomposition

�L(A) =
∞∑

n=0

∑
k1<···<k2n

〈bk, XA+�〉 · bk +
∞∑

n=0

∑
k1<···<k2n+1

〈bk, XA−�〉 · bk, (2.35)

as an example for a representation of type (2.9) of �L. As ‖bk‖ = 1 for all k1, . . . , kn ∈ N,
and ‖A±‖ � ‖A‖, the sum of the expansion coefficients can be estimated with the help of
(2.33) as follows:

∞∑
n=0


 ∑

1�k1<···<k2n

|〈bk, XA+�〉| +
∑

1�k1<···<k2n+1

|〈bk, XA−�〉|



� ‖A+‖
∞∑

n=0

22n
∑

1�k1<···<k2n

2n∏
j=1

∥∥T bkj

∥∥ + ‖A−‖
∞∑

n=0

22n+1
∑

1�k1<···<k2n+1

2n+1∏
j=1

∥∥T bkj

∥∥

� ‖A‖ ·
∞∑

n=0

∑
1�k1<···<kn

n∏
j=1

2tkj
. (2.36)
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According to (2.10), the sum (2.36) provides an upper bound for the nuclear norm of �L.
To compute this sum, note that (2.36) is nothing else but the partition function of the ideal
Fermi gas with Hamiltonian e−βH = 2T and zero chemical potential in the grand canonical
ensemble. This leads to the estimate (cf, for example, [12])

‖�L‖1 �
∞∑

n=0

∑
1�k1<···<kn

n∏
j=1

2tkj
=

∞∏
j=1

(1 + 2tj ) = det(1 + 2T ). (2.37)

As det(1 + 2T ) � exp(2‖T ‖1) < ∞, the nuclearity of �L follows. Taking into account

‖T ‖1 � ‖Tϕ‖1 + ‖Tπ‖1 = ‖EϕX‖1 + ‖EπX‖1, (2.38)

we also obtain the bound (2.12) given in the proposition.

3. Application to the Ising model

The two-dimensional Ising model is a lattice model of Z2-spins with nearest neighbour
interaction which is known to undergo a second-order phase transition at some critical
temperature. For detailed information on the Ising model and a guide to the literature, see
[20]. We point out here only that the correlation functions have been derived in [21, 29], and
later by a different method in [24]. The field theory obtained by taking the scaling limit [26]
of the Ising model can be described by a Majorana fermion and is known to have a factorizing
S-matrix, which is given by the two-particle scattering matrix S2 = −1 [3]. Hence the full
S-matrix is

S = (−1)N(N−1)/2, (3.1)

where N denotes the particle number operator. The corresponding formfactors have been
obtained in [3], and in [1] it was shown how to rederive the correlation functions from the
formfactors.

We consider here the field theory with the S-matrix (3.1) as a particular simple example of
the class of theories considered in [18], and will apply proposition 2.1 to obtain an existence
proof for local observables in this model. Besides this possibility of testing our approach to
the inverse scattering problem in a first non-trivial example, the point of view taken here gives
us the opportunity to add some information to the well-studied Ising model, as no rigorous
proof of the Wightman axioms for the n-point functions is known to us.

As the modular nuclearity condition is only a sufficient criterion for the existence of local
operators, it is an important test if it is satisfied here. By proposition 2.1, the verification of
this condition can be simplified to a problem on the one-particle space.

We begin by briefly recalling the structure of the models under consideration in a manner
adapted to the discussion in section 2. For a more thorough treatment, see [18, 10]. The net
structure of the algebras of observables localized in wedges W arises from a net of symplectic
subspaces of the one-particle space by a ‘second quantization’ procedure. Recall that in two
dimensions, all wedges are translates of the right wedge

WR := {x ∈ R
2 : x1 > |x0|} (3.2)

or of its causal complement WL = −WR .
The one-particle Hilbert space K can be identified with L2(R, dθ) by using the rapidity

parametrization of the upper mass shell, p(θ) := m(cosh θ, sinh θ). On K we have a unitary
positive energy represenation U of the proper orthochronous Poincaré group defined as follows:
let B(λ) denote a proper Lorentz transformation with rapidity λ and x ∈ R

2 a translation. We
set

(U(x, B(λ))ψ)(θ) := eip(θ)x · ψ(θ − λ). (3.3)
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We furthermore introduce the notation ω for the one-particle Hamiltonian which acts on a
dense domain in K by multiplication with m cosh θ . With the help of the involution

(�ψ)(θ) := ψ(−θ) (3.4)

and the auxiliary, �-invariant spaces

L± := {θ �→ f̃ (m sinh θ) : f ∈ S (R±)}, (3.5)

one defines

Lϕ(WL + x) := {U(x)L−}−, Lπ (WL + x) := {U(x)ωL−}−, (3.6)

Lϕ(WR + x) := {U(x)L+}−, Lπ (WR + x) := {U(x)ωL+}−, (3.7)

and the real linear subspaces L(W) ⊂ K in accordance with the procedure in section 2 as

L(W) := (1 + �)Lϕ(W) + (1 − �)Lπ (W). (3.8)

The full Hilbert space H of this model is the fermionic Fock space over K. This is a special
case in the class of factorizing S-matrices considered in [18], where one has a representation
of Zamolodchikov’s algebra

z†(θ1)z
†(θ2) = S2(θ1 − θ2)z

†(θ2)z
†(θ1), (3.9)

z(θ1)z
†(θ2) = S2(θ2 − θ1)z

†(θ2)z(θ1) + δ(θ1 − θ2) · 1, (3.10)

by operator-valued distributions z(θ), z†(θ) acting on a Fock space with an S2-dependent
symmetry structure [19]. The so-called scattering function S2 appearing here is closely related
to the two-particle S-matrix.

As the S-matrix (3.1) corresponds to the scattering function S2(θ) = −1, the Hilbert
space H in this case is the fermionic Fock space over K and one may define annihilation and
creation operators representing the CAR algebra (2.2), (2.3) as

a∗(ψ) := z†(ψ) =
∫

dθψ(θ)z†(θ), a(ψ) := z(ψ) =
∫

dθψ(θ)z(θ) ψ ∈ K.

Furthermore, the wedge-local field operator considered in [18] has the same form as the field
φ(ψ) defined in (2.4). Note that we do not deal here with a free fermionic field, but rather
with a Bose field represented on an auxiliary antisymmetric Fock space. As a matter of fact,
all factorizing models considered in [18] have bosonic scattering states. By means of φ, one
can construct a wedge-dual net of von Neumann algebras from the subspaces L(W) as

A(WL + x) := {φ(ψ) : ψ ∈ L(WL + x)}′′, A(WR + x) := A(WL + x)′. (3.11)

This net is covariant with respect to (the second quantization of) U, and the Fock vacuum vector
� ∈ H is cyclic and seperating for each algebra A(W). Moreover, the modular operators of
these algebras with respect to � are known to act geometrically correct, i.e. as expected from
the Bisognano–Wichmann theorem [10].

In the above construction, we distinguished WL as reference wedge by generating the
algebras associated with left wedges WL + x by the fields φ(ψ),ψ ∈ L(WL + x), and defined
the algebras associated with right wedges as the corresponding commutants. Another possible
definition of the wedge algebras, which distinguishes WR instead of WL as reference wedge, is
given by interchanging WL and WR in (3.11). Note that these two definitions do not coincide.
With the convention (3.11) used here, A(WR + x) is not generated by φ(ψ), but by a second,
different field φ′(ψ) = Sφ(ψ)S∗, lying relatively wedge-local to φ [18], i.e.

A(WR + x) = {Sφ(ψ)S∗ : ψ ∈ L(WR + x)}′′. (3.12)
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But since S (3.1) commutes with the translations, the two nets arising from distinguishing
either WL or WR as reference wedge are unitarily equivalent. Therefore we can adopt the
convention (3.11) without loss of generality.

To analyse the content of local observables of the net (3.11) of wedge algebras, we
consider a double cone Ox := WL ∩ (WR + x), x ∈ WL, and the algebra

A(Ox) := A(WL) ∩ A(WR + x). (3.13)

According to the modular nuclearity condition, the existence of observables localized in Ox

is ensured if the map

�(x) : A(WL) −→ H, �(x)(A) := �1/4U(x)A�, (3.14)

is nuclear, where � denotes the modular operator of (A(WL),�). Comparing with section 2,
we see that �(x) has the form of the map �L considered there with L = L(WL + x) and
X = �1/4. Indeed, �1/4 is closed, strictly positive, and is the seond quantization of its
restriction to the one-particle space. One-particle states ψ ∈ dom �1/4 have wavefunctions
admitting an analytic continuation to the strip S

(
0, π

2

) = {
θ ∈ C : 0 < Im(θ) < π

2

}
with

continuous boundary values, and one has in particular

(�1/4ψ)(θ) = ψ
(
θ +

iπ

2

)
. (3.15)

Consequently, �1/4 commmutes with �. We therefore may apply proposition 2.1 to deduce
the nuclearity of the map (3.14) from the nuclearity of the one-particle operators

Tϕ(x) := �1/4Eϕ(WL + x), Tπ(x) := �1/4Eπ(WL + x), x ∈ WL, (3.16)

where Eϕ(WL + x), Eπ(WL + x) ∈ B(K) denote the orthogonal projections on the subspaces
Lϕ(WL + x) and Lπ (WL + x), respectively. But the operators (3.16) were already shown
to be of trace class on L2(R, dθ) in [10]. We have thus verified the modular nuclearity
condition in this model, thereby finishing the construction of the corresponding net of local
algebras (3.13).

To summarize, the map O �−→ A(O) defined by (3.13) and (3.11) is an isotonous, local
net of von Neumann algebras which is covariant with respect to the action of the representation
U because of the corresponding properties of the net of wedge algebras [18]. Furthermore,
we established here the following proposition.

Proposition 3.1. In the model theory with S-matrix S = (−1)N(N−1)/2, the maps �(x) are
nuclear for any x ∈ WL. As a consequence, the local algebras A(O) (3.13) are isomorphic to
the hyperfinite type III1 factor for any double cone O.

In particular, every local algebra A(O) has cyclic vectors and therefore contains non-
trivial operators.

4. Conclusions

We have verified the modular nuclearity condition in a factorizing model with non-trivial
S-matrix, thus realizing the algebraic construction of such theories in a first example. The
work presented in this paper is another step in the constructive program initiated by Schroer
[25, 27] which provides a further test of the utility of the modular nuclearity condition in this
context. Applying the results from [10], the local algebras in this model were shown to be
non-trivial and satisfy all postulates of nets of local observables. One may therefore expect
that this algebraic approach is also viable in models with a more general factorizing S-matrix.
The nuclearity properties of such theories will be discussed elsewhere.
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In comparison to other treatments of factorizing models [2, 3, 21], it is apparent that
the approach described here and the formfactor program are complementary to each other:
whereas explicit constructions of n-point functions and computations of formfactors are more
convenient in the field-theoretic context, the algebraic approach appears to be better suited for
the discussion of existence problems. It seems that one needs both approaches for a proper
understanding of this area of quantum field theory.

In conclusion, we mention that the methods developed here can also be applied to
theories of free fermions in order to establish nuclearity properties. Consider a free Fermi
field on (d + 1)-dimensional Minkowski space, and a double cone Or := {(x0, x) ∈ R

1+d :
|x0| + |x| < r}. Let A(Or ) denote the corresponding von Neumann algebra of observables
localized in Or . Fixing a Hamiltonian H as the generator of translations along some timelike
direction, we consider the maps

�β,r : A(Or ) −→ H, �β,r (A) := e−βH A�, β > 0. (4.1)

Analogous to �(x) (3.14), �β,r can be formulated in terms of a real subspace of the one-
particle space [11]. Setting X = e−βH , the mathematical structure described in section 2 is
thus seen to be present also in this context. Hence proposition 2.1 can be applied to reduce the
nuclearity problem for �β,r to a question on the one-particle space, which is known to have
an affirmative answer [11]. Applying the calculations from the appendix of [11], one can also
derive bounds on the nuclear norms ‖�β,r‖1 in terms of β, the spacetime dimension and the
diameter r of the localization region considered, thereby establishing the energy nuclearity
condition and all of its consequences [8, 11] in this class of models.
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